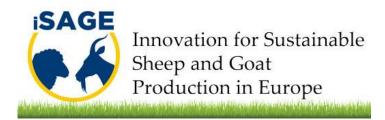


Potential and limitations of genomic selection in small ruminants

Clara Díaz, Manuel Ramón, Daniel Martin-Collado


cdiaz@inia.es

Partners involved

Industry: AGRAMA, ARDIEKIN, ASSAF.E, CAPGENES, CNBL, FRIZARTA

Research: INIA, AUTH, IDELE, CITA, IRIAF

France, Greece and Spain

Background

- Genomic Selection programs in dairy cattle industry are in place and working: well organized, "one large population", "willing to innovate", international collaboration tradition.
- Why does it work from a genetic perspective?

What about the small ruminant populations?

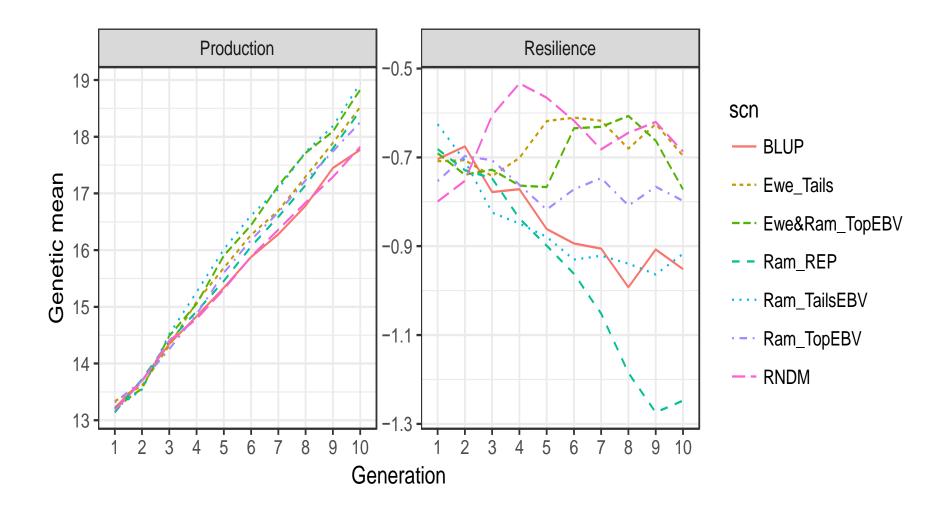
Aims

- What is the perception of small ruminant stakeholders? to identify potential limitations and possible drivers?
- How could we do to get the most? to maximize the amount of information?
- What about the main actors: "farmers"?
 would they be willing to use the genomic tools?

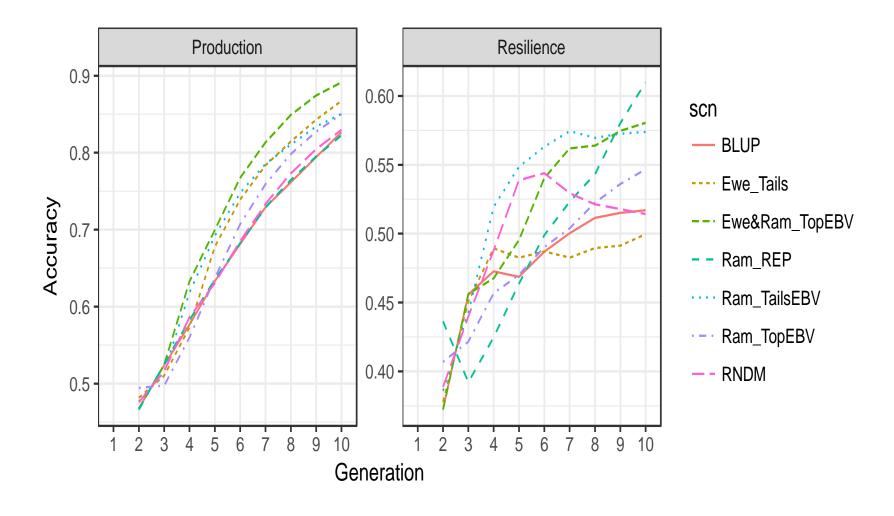
 8 open questions to stakeholders? to identify potential limitations and possible drivers?

- Simulation of genotyping strategies to maximize information
- Attitudinal statements + some general questions about farm and farmer profile.

Communalities among stakeholders



- GS program must be based on a well structured industry support by a common organization
- Costs-Funding main limitation
- Identify groups of enthusiastic farmers to drive genetic improvement
- Timing for genotyping to make selection deccissions
- Public opinion: MGO



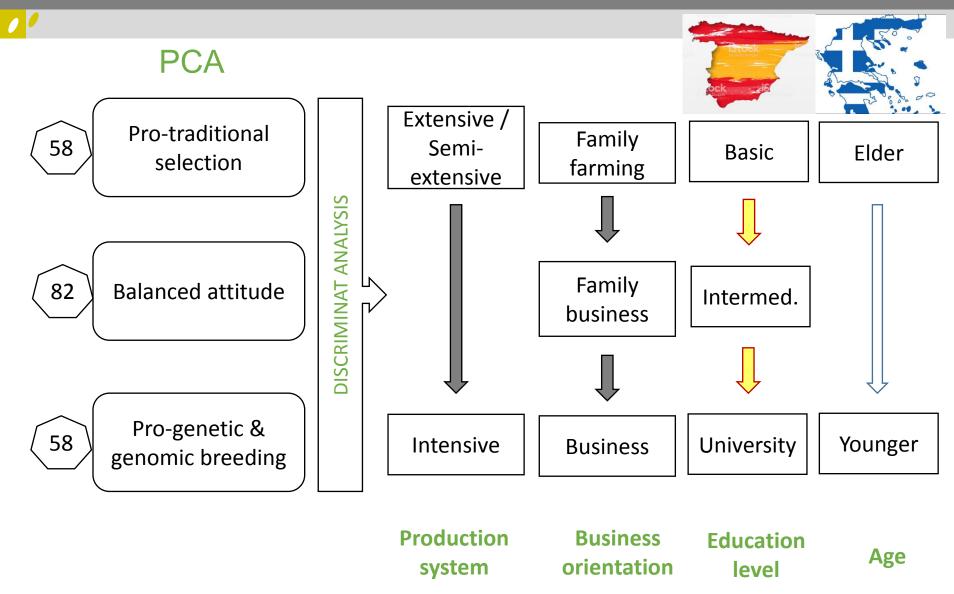
What are the scenarios to control the cost?

What is the scenario to control the cost?

Correlation between attitudinal statements, attitudinal dimensions and attitudinal gradient

Attitudinal statement	Att. toward traditional selection	Att. toward G &G breeding	Att. gradient Traditional – G&G
Using breeding values to select rams/ewes improves the performance of sheep better and faster than other ways of selecting.	-0.4	0.4	-0.4
The use of genomic and DNA/gene information to select rams/ewes will improve the performance of sheep better and faster than any other method.	-0.2	0.8	-0.6
It is important that opportunities for selection of sheep with genomic and DNA/gene information are fully utilized.	-0.2	0.8	-0.6
It is important that opportunities for selection of sheep with new genetic developments are fully utilized.	-0.2	0.7	-0.6
The appearance of a ram/ewe is sufficient for telling its performance.	0.8	-0.6	0.7
The appearance of progeny fully indicates how good the ram/ewe is.	0.8	-0.1	0.6

Attitudinal driving factors


Attitudinal farmer group					
Farming system and farmer factors		Pro-traditional selection	Balance Traditional-G&G	Pro-G&G	
¹ Production	Intensive	22.4	28	56.9	
system	Extensive/semi-extensive	77.6	72	43.1	
¹ Farm	Business	0.0	6.1	17.2	
property	Family business	34.5	41.5	50.0	
regime	Family farming	65.5	52.4	32.8	
Pedigree recording (% of farmers)		34.5	50.0	84.5	
Performace data recording (% of farmers)		46.6	56.1	91.4	
1,2 Education	Basic	48.0	36.6	39.1	
level (Spain) Intermediate	12.0	17.1	8.7	
	University	40.0	46.3	52.2	
² Age (Greec	e)	44.2 ± 11.6	40.5 ± 9.7	40.2 ± 8.6	

¹Perc. of farmers of each attitudinal group that falls in each category of production system, property regime and education level

²Education level is on related to farmer attitudes in Spain and age only in Greece

Farmers' attitudinal groups

Conclusions (I)

- Limiting factors:
 - Costs of genotyping and phenotyping
 - Change in breeding structures: cooperative work
 - Media effort to revert public opinion
- Driving factors:
 - Active extension services: business oriented.

Conclusions (II)

- 0
- Genotyping scenarios
 - Provide different responses
 - Different correlated responses

- Conpremhensive selection objective?
 - More complex production scenarios
 - Non directional variability?

CITA, INIA and IRIAF thanks to

ASSAF.R, CHURRA, Latxa and Manchega breed Associations for providing data.

And

Ministry of Agriculture Food and Fisheries for funding part of this work.

